Name: _____ Unit 1: Force & Motion NOTES: 2.07 | FOCUS: Simple Machines | |---| | ESSENTIAL QUESTION: Can you explain what a machine is and how machines make work easier? | | What do we already know? A force is a push or pull applied to an object that causes that object to change its shape or velocity. Work is done on an object when the applied force causes displacement, or movement in the same direction as the force. Work is calculated by multiplying force times distance. | | • A machine is a device that makes work easier or more efficient | | A machine does not: Create CNCrgy (Remember the Law of Conservation of Energy) Do work On its own. Multiply the amount of work put into it. | | • A machine does: o <u>USC</u> the energy put <u>INTO</u> it to do <u>WORK</u> on an object. o Put <u>Out</u> the same amount of work put <u>INTO</u> it. How do Machines Make Work Easier or More Effective? | Name: _____ Unit 1: Force & Motion NOTES: 2.07 | Machines can make work easier in 3 ways: | |--| | 1) By changing the amount of force you | | must exert. | | 2) By changing the distance over | | which you must exert your force. | | 3) By changing the direction in which | | you must exert your force. | | What makes one machine more effective than another machine? | | • You can figure out how <u>useful</u> or <u>effective</u> a machine is by comparing the amount of <u>force</u> you must put | | machine is by comparing the amount of force you must put | | Into the machine to the amount of force you get | | out of the machine. | | o input force: | | The form Model mutilities | | The force put into a | | machine | | ■ Example: Y O Y | | turning a can | | turning a can opener | | | | · Output force : The force the machine | | | | puts on an object - Example: the blade cutting into | | the can | | 114 (01 | Unit 1: Lorce & Motion NOTES: 2.07 How can you get the machine to do the work for you? By manipulating the in put force and/or in put distance you can make the machine do most of the work for you. Pas ier · Remember the 3 ways machines do work: 1) By changing the amount of force you must exert. 2) By changing the distance over which you must exert your force. 3) By changing the <u>direction</u> in which you must exert your force. 1. Changing the AMOUNT of force you exert: whee barrow 2. Changing the DISTANCE over which you must exert your force: No Ramp: F= 750 /\ F= 750 N D= / M W= 750 J Same with Ramp F=5001Y D=5m W=\$25005 Swing Set F-2500N W=FXD=2500 J D; | Name: | Unit 1: Force & Motion | NOTES: 2.07 | | |---|--|---------------------|--| | 3. Changing the DIRECTION | ON in which you must exert your force | e: Pulley | | | F= 500 N | T. S | F= 500 N | | | D= 2 m
W= 1000 J | | D= < m
W= 1000 T | | | 1000) | The state of s | 9 | | | | | 7 | | |) F | | | | | | | | | | | ' | | | | **Remember: | | | | | ■ The Output Work can not exceed the | | | | | The Output Work can not exceed the input work. | | | | | ■ A machine can not create <u>୧ h e r g y</u> . It can only <u>U J e</u> the | | | | | A machine can not create <u>Phergy</u> . It can only <u>U-Se</u> the <u>Phergy</u> that you put into the <u>Machine</u> . It will make your work <u>Pasier</u> , by changing the <u>Amount</u> , | | | | | It will make your work <u>easier</u> , by changing the <u>a mount</u> , | | | | | distance, and/or direction of your | | | | | input force. | | | | | " | | | |